
Learning with immediate feedback

Abstract
To teach students how to program, I have developed a number of tools aimed to shorten the
time from delivery to feedback. At its best, it offers students, available any time, immediate
rich feedback on their production, so they can deliver their assignments confidently.

This approach offers a number of additional benefits, such as, flexible schedule, unbiased
evaluation, sense of fairness (no more score negotiation), improved engagement, more time
during class to deal with diversity, clean comparison to perform statistical studies. Students
get used to striving for strict fulfillment of requirements while dealing with current real
professional tools and techniques.

These tools are integrated in a wider system that includes online contents specially tailored
to students needs inspired in the flipped-classroom approach; a fair amount of meaningful
(i.e. non abstract) exercises constructed in a way that each exercise includes a new feature

while recovering previously worked ones, to help integration; a positive and cheerful
approach during class time encouraging participation, collaboration, assertive feedback,
respect, professional orientation, and also very important, the idea that solving problems can
be enjoyable and even fun.

In this article, I will focus on presenting the automation side.

Motivation
I am a computer engineer and a teacher of vocational training helping students to learn how
to program for 18 years. My love for automating processes is compelled by the conviction
that no human being should be forced to perform the same boring task more than twice
when a machine can do it for us. To me, evaluating deliveries of the same exercise, again
and again, is one of those boring tasks.

Back in my times as only-student, one of the most frustrating aspects of school was never
knowing whether my work was right or wrong until the teacher delivered me their evaluation.
These evaluations, from my point of view, systematically came late and often poorly
described —sometimes just a raw value as 9 or A— So, most of the time this
feedback-wannabe was useless at best.

That was not the natural way of learning. As you know, reality makes you aware you are not
balancing properly on your bike, using very immediate —sometimes painful— feedback.
Was that immediacy exclusive to learning body-control stuff?

When I became a computer developer, I discovered that when trying to run my flawed
program, there was also immediate feedback delivered to me by tireless and merciless
entities like compilers and interpreters. They would immediately tell me, for instance, that I
forgot a semicolon or my program was trying to access a forbidden memory address.

Then, I became a teacher and I discovered myself delivering that same unuseful late and
poorly described feedback to my students. Why? Of course, I was only a human with just so
many hours in the day and, amongst many other things, so many deliveries to evaluate.
Students did not complain, after all, my performance was just what they were used to.
Nonetheless, I felt frustrated.

There must be something I can do, I thought. After all, deliveries are just information and that
is what a developer is supposed to be specialized in dealing with!

So I decided to do something to fix, or at least, improve it. I decided to embrace the way of
automation.

The way of automation
Embracing the way of automation is a continuous process. You don’t get there all of a
sudden.

The first step toward shortening the feedback time is to require all the deliveries in
electronic format. About twenty years ago, that was not that normal.

In the beginning, students would email me their deliveries deciding names, formats,
subjects, etc. So you have me spending hours identifying the deliveries amongst hundreds
of emails, then downloading the attachments and renaming them after the student’s name.
Here came the second requirement: normalization. It is great that students can express
their originality (I love to see that variety of haircuts and colors), but they must conform to
some requirements when it comes to a delivery: the subject of the email must be exactly
“delivery exercise_nr”, and the name of the file must be “surname_name_exercisenr.zip”. My
first scripts (small computer programs) helped me to unzip all the deliveries in separate
folders, conveniently named, so I could evaluate them uniformly.

Soon there came LMS (Learning Management System), Moodle in my case that put all the
deliveries in the same place and allowed me to specify time constraints. Back then, there
was no way to download all the deliveries as a pack, so I coded some new scripts to do so.
In the same vein, other scripts would pick scores from a spreadsheet and place them on
Moodle.

Once the mechanics of the deliveries were acceptably solved, the evaluation side got the
focus. There are mainly two kinds of exercises depending on whether the product to be
delivered is structured or unstructured.

Unstructured productions correspond to exercises like “Describe in your own words what is
the function of #include<stdio.h> in your program”. Sure you can code some scripts to check
for document structure conformance (easier when normalizing document format) and other
requirements like word count, but, in the end, I am still to find an acceptable way to escape
from reading the contents if you want to give proper feedback. Reading is time-consuming
so it is advisable to minimize this kind of exercise as much as possible. That is, reduce
manual evaluation.

Structured productions are a whole other story. Let me define them in opposition to
unstructured ones. A structured one is such a production that allows a program to fully
evaluate it without requiring human intervention. The evaluation program will pick up the
student’s delivery and produce an evaluation result. This result can be as simple as a
boolean pass/fail or as complex as a list of precisely-described missing, wrong or
unexpected features.

The structured productions easier to come out, at least for me, were the computer programs.
A computer program can be tested by running it with a given input and then comparing the
produced output with the expected one.

Not only programs can be treated as structured productions. For example, a program can
assess whether an XML document or a database conforms to the specified format and
contents, or even a system ends in a certain state when the student performs the required
actions using the operating system.

Am I hearing some teachers complaining in the form of “ my subject is not in the computer
development business; it requires mostly unstructured productions from my students.”? If
that is your situation, you know your alternatives for automation (mainly quizzes enriched
with good feedback) Scripts can help you do some filtering for the textual productions,
though and, who knows, as artificial intelligence advances, some of those productions could
eventually become tractable as structured.

So, let us see what I have today.

Evil’s in the details
This article gets a little bit more technical here, hopefully not too much as to annoy those of
you less technical oriented, and not so little as to bore those techies amongst you.

The bunch of original scripts evolved into a sort of complex application that changes
significantly every academic year. Wanting a better name, I call it iesaval (for Institut
d’Ensenyament Secundari or Secondary Teaching Institute), and avaluació (for evaluation)

Currently, iesaval consists of around 60 scripts (over 20K lines of mostly Python code+tests)
aimed to manage students, exercises, deliveries, tests, scores, reporting, and
communication.

Six years ago, iesaval had a significant change. I started delivering part of the evaluation
system to the students so they could get, finally, the immediate feedback I was yearning for
all these years. This part of the system started as a set of Bash scripts and some JUnit. In
the last editions, it became a more compact entity under the name of prgtest. Nowadays,
prgtest is a Python script that is able to evaluate and provide rich feedback about each
exercise, at the student’s will. The current version is specialized to be run by the student as
a command-line program on a standard GNU/Linux distribution (as Debian or Ubuntu) to
evaluate their Java programs.

Another important improvement happened four years ago when Moodle was definitively
replaced by GitHub, a sort of social media for developers that allows sharing code managed
by arguably the most used control version system nowadays; that is git.

From then, the system gets improved every year. For example, two of this year's additions
are the ability to deal with deadlines and performing auto-commits —i.e. prgtest does commit
on behalf of the student to speed up interaction.

To deal with iesaval, students create a private git repository in GitHub and share it with me.
Once registered the student and their repository, iesaval clones the student repository and
copies the support files. Support files include the prgtest script, but also the test
specifications for each exercise, and a result report.

The test specifications syntax is fairly flexible in the current version. It allows describing in a
readable Yaml file for each exercise, the expected interaction with standard input/output,
command-line arguments, files, and even databases, as well as specifying additional JUnit
tests to check internals of the programs. The student can have a lot of freedom in their code
and still get feedback about the deviation from the requirements.

The result report is an HTML document that describes the results of all the active exercises
from iesaval’s point of view. It also includes information about deadlines and errors, if any,
found.

The typical workflow for an exercise from the student's point of view is:

1. The teacher pushes the support files to the student repository

2. The student pulls the support files from their repository, reads the statement of the
exercise and starts coding

3. Once the student is confident about their code, they run prgtest to get feedback
about their work.

4. prgtest output guides the student on the next steps to take. For example, it can
propose to compile the code or to commit changes to git. When an unexpected
output is found, prgtest describes the failure. For example, it can specify the
command used to run the student code, and when appropriate, the standard input
or/and file contents provided to the code. Then it shows the expected output, the
actual output of the program, and the difference. There are other more sophisticated
tests that can show problems such as how a function failed to produce the expected
results from the given arguments, or the wrong visibility of a class attribute.

5. Once the student considers the exercise is done, they can push it to the shared
repository, from where iesaval will be able to retrieve it.

6. After some time —yes, this part is not immediate yet— the report is updated with the
results from the delivery and the student gets it by pulling it from the remote
repository.

From the iesaval point of view, the workflow is:

1. iesaval pulls the changes in the repositories of all the active students. This is usually
started manually because I like to get a rough idea of which students have been
delivering which exercises. But sometimes I schedule pulling, together with the rest
of the steps, using standard GNU tooling (cron).

2. Once detected the exercises that have changed, iesaval runs prgtest on those
delivered before the deadline.

3. Those passing prgtest will be quality tested. Quality tests are another set of tests
apart from the ones performed by prgtest. These tests currently do not involve
running again the student code and focus on other aspects of the delivered code. For
instance, they can check whether the code contains headers, or that it does not
include forbidden functionality as could be using the break clause within a loop.
Failing here will generate error messages that will appear on the student’s report.

4. With the results of basic and quality tests, iesaval updates the student’s report
5. Finally, iesaval pushes the report to the shared repository so the student can get it.

The student can run prgtest as many times as they wish. Also, they can deliver as many
times as wanted.

Let me do some math for you. To make things easy, suppose I have 50 exercises in a block
with 60 students enrolled. Also, very unrealistically, let us assume I need a single minute to
manually evaluate each exercise, and that the students just deliver each exercise once. With
the given numbers it would take me around 50 hours to complete the evaluation! iesaval
does all this within minutes while I am answering a question from one of my students.
Furthermore, these assumptions are far from reality. Some blocks have way more than 50
exercises and for most of the exercises there are many subtle tests that, alone, would
require minutes of manual evaluation. Also, students rarely deliver just once. Unfinished
exercises and quality test failures often induce them to re-deliver; sometimes a significant
number of times! Luckily I did not code the complaint module for iesaval. Therefore, it will

re-evaluate any change on the same exercise for the same student, again and again, until
dead-line.

When a block of exercises has to be closed, iesaval offers some more help, for example, on
extracting and placing data from spreadsheets and delivering final results by email. It will
also help me with a number of small management utilities like checking remotes are private
or integrating exercise statements within the course contents.

An important reminder: if you plan to implement something like iesaval: remember that
running arbitrary code on your machine can bring you undesired outcomes. Of course, it is
not easy that a student dares trying to break into your machine, taking into account that all
the revealing traces stored in git, GitHub, etc, would focus directly on them. Nonetheless, it
is possible to have your system compromised. iesaval has implemented some protections
and I definitely encourage you to do the same.

Pros & cons
As with everything in life, a system such as iesaval offers a number of benefits but also has
its drawbacks.

Starting from the positive points, maybe the rock star is the possibility to offer immediate
feedback to the student, but it is not the only one I have found.

Closed in appreciation is the possibility to evaluate students without bias. With no biased
evaluation, I mean that it is not required for the teacher to perform any effort on blinding the
evaluation so as not to be influenced by possible prejudices or preferences that could
discriminate against the students by gender, race, age, personal sympathies/antipathies, etc.
Of course, most of us want to believe we are immune to all these flaws but, as any teacher
knows, even taking precautions like blind-evaluating, it is not the same to evaluate a
mediocre exercise after a sequence of bright ones, as evaluating the very same mediocre
exercise after a sequence of really poor ones.

The always-available prgtest offers the students high flexibility to schedule their work. My
typical student is an adult person, often with familiar and/or job loads. The possibility to work
on their assignments at their best moment is an important feature.

The students tend to perceive a sense of fairness in the evaluation. You never get the
typical “why Anna’s got an A while I get only B?”. There is no score negotiation either. If
iesaval is doing wrong for someone, it is doing wrong for everyone.

Students, thanks to the immediate feedback, tend to improve engagement in their studies.
Some have even reported that they feel like they are playing to defeat prgtest as if they were
in a game. This was to me an unintended but highly welcomed outcome, as you can
imagine.

Having a tireless prgtest that will tell the students how they are doing with their exercise, also
frees the teacher from a lot of questions so they can dedicate more time to dealing with
diversity. That is, to devote more time to the students with more difficulties and, what is still
better, to enhance the experience of those bright students that normally get bored without
attention because others less bright consume all the teacher’s time.

The no-bias evaluation property brings us another very nice benefit, the possibility to cleanly
compare students in different groups and academic courses. While this is a very promising
aspect, I have not yet explored it extensively. However, there are some first intuitions that
can be validated by collected data, since it consistently seems to agree that the average age
and the cardinality of the group do have an impact on the average performance of the group.
You might argue that everybody knows that more mature and less crowded groups tend to
perform better. I will say the same but now I can offer some juicy data to back my assertion.
While the amount of students I have, might not be enough to make these stats significant, I
consider it definitely better than not having them. I am even playing with the idea of feeding
some machine learning algorithm to help me detect potential learning problems or cheating,
and even suggesting exercises to reinforce weakly learned concepts.

Finally, an interesting advantage of this approach for developers is that they get used to
fulfilling requirements strictly, dealing with automated testing, version management systems
and GNU/Linux for free. All these are valuable skills for their future profession.

For the evilest side of iesaval, allow me to devote the next section.

Playing cat and mouse
While iesaval is nowadays a fairly robust piece of code, significantly protected by a bunch of
unit testing it keeps revealing new weaknesses as I use it. Over the years, students have
aptly proven over and over their creativity in finding these weaknesses.

I like to think about these weaknesses as challenges. They are both.

Let me give you some of the many many many examples I have found, fought and still fight,
over the years.

The first one appeared on a very initial version of iesaval. The scripts were still coded in
Bash script and the deliveries came from Moodle. Suddenly the evaluation stopped working
with a cryptic message, and it took me some weeks to debug it. At the end, it was something
very simple. A student managed to deliver a file with a carriage return within its name and
that broke the system. The solution required some research and a small tweak so the
evaluator script would read file names as a raw string.

Now, a more recent example. Some exercises require the student to give a certain answer
depending on the input. The way tests work right now requires a finite number of
well-defined tests. Some students discovered that instead of programming the requirements,
prgtest would pass a code consisting of a list of conditionals in the form “if the input is A then
result is a, else if the input is B then the result is b…”. Every time prgtest would complain, it
would provide for new input and its expected output that should be added to the code.
Furthermore, since I’m currently not performing extra running tests, they found that there
was only a small chance to get caught if the exercise was finally evaluated manually. Clever
if you are a lazy student, eh? To cope with this situation, I defined a number of solutions and
finally implemented the cheapest one: a quality test that checks if the input is not present in
the code.

While up so far the majority of the students have engaged with the prgtest way, there is
always a number of them that do not. The main complaints are excessive strictness and too
much work. Some students manifest to feel uneasy when they know they will be evaluated
by a program instead of a human. Fortunately, as the system evolves, the number of these
complaints have decreased significatively and, after properly explained, most of the
complaining students understand that getting human evaluation means giving up some
interesting features like immediate feedback.

Excessive workload is also a very common complaint, and not a particularly easy one to
tackle. For some students, there are too many similar and basic exercises while for others,
these same exercises are seen as too steepy and would appreciate some more redundant
exercises for further practice. My most promising bet to deal with this problem is
personalization. That is, being able to request different exercises depending on the
student's previous performance. This is one of the main lines of research for the future
iesaval.

The student’s willingness to share their results represents a problem of its own. Every year I
have to modify, at least slightly, different aspects of the exercises. Otherwise the students
can find the solutions somewhere. I’m fighting this from different angles. To begin with, I try
to explain to the students that they and the future students will not get the most from the
experience if they find working solutions for the exercises. There are also a number of
scripts aimed to help me in the construction and modification of exercises. Finally, the traces
they leave when working on an exercise can be analyzed and some “cheating” patterns can
be easily detected. Anyways, I feel that these solutions are partial and this problem
constitutes another important line of research.

With all these in mind, what is to be expected from the future iesaval?

Wrapping up
I have presented iesaval, a work-in-progress set of tools that allows immediate feedback on
students’ productions. While iesaval offers multiple advantages, there are also important
lines of research to improve it.

One might think that being able to evaluate effortlessly as many deliveries as required,
should leave the teacher without anything to do other than picking up a nice beverage and
relaxingly observing from the reporting tools how the students learn without supervision.
Quite the opposite! This kind of approach is highly time-consuming. And the cat-and-mice
game is just part of the story.

The number of improvements in my backlog is overwhelmingly high. Ranging from fixing
detected bugs, visual improvements, cheat detection enhancement and even personalized
exercise suggestions based on the student's learning pattern. And there is still more! This
article has not dealt with the online contents (i.e. the study materials). During the last years, I
have experimented with story-telling techniques, and they are producing quite significant
results. For example, one of the characters that appears in the contents is a cat (yes, a cat!)
named Renat. Traditionally some students bring to the class jokes, drawings and even
poems! This year, a group of last year’s students presented a project to a contest and the
name of the team was…? Any guesses? It was Cat Renat!

I firmly believe that the combination of immediate —or at least fast— feedback with
meaningful exercises and contents in a respectful and playful environment, creates a
memorable learning experience for my students.

I have already said that this approach is highly time-consuming. What I have not yet told you
is that it is also highly satisfying. What else could a teacher wish other than seeing their
work is both useful and fun?

If you ask me what single event could significantly improve iesaval, with no doubt I would
answer that some passionate teacher-plus-developer joins me in this adventure. Maybe
you?<

